Hosted Online from Warsaw, Poland on October 10th, 2022.

www.conferencepublication.com

МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ИЗМЕНЕНИЕ ЩИТОВИДНОЙ ЖЕЛЕЗЫ В СОСТОЯНИИ ГИПОТЕРИОЗА

Каттаходжаева Д.У.

Ф. И. О., Ташкенская медицинская академия, Узбекистан, г. Ташкент

Усмонов Р. Ж.

Кафедра анатомии, клинической анатомии (Зав.кафедрой - профнаучный

Ахмедова С. М. руководитель - д.м.н.

Аннотация

Целью исследования было изучение морфологических изменений в щитовидной железе при экспериментальном гипотиреозе. Эксперименты были проведены на 28 белых беспородных крысах, которые были разделены на контрольные и экспериментальные группы. Было установлено, что при экспериментальном гипотиреозе в щитовидной железе лабораторных белых крысах развиваются дистрофические, атрофические и деструктивные изменения гепатоцитов. Эти изменения наиболее выражены на 60 й день эксперимента. К концу эксперимента эти явления еще более усугубились.

CHANGE OF THE THYROID OF THE OFFICIAL, BORN FROM MOTHERS IN THE CONDITION OF HYPOTHERIOSIS

Kattakhodzhaeva D.U. Ф.И.О., Tashkent Medical Academy, Uzbekistan, Tashkent

Usmonov R. J.
Department of Anatomy, Clinical Anatomy
Head of the Department - Professor.

Akhmedova S. M. Supervisor - Dr. Med.

Annotation

The purpose of the study was to study the morphological changes in the thyroid gland during experimental hypothyroidism. The experiments were carried out on 28 white

Hosted Online from Warsaw, Poland on October 10th, 2022.

www.conferencepublication.com

outbred rats, which were divided into control and experimental groups. It was found that in experimental hypothyroidism in the thyroid gland of laboratory white rats dystrophic, atrophic and destructive changes in hepatocytes develop. These changes are most pronounced on the 60th day of the experiment. By the end of the experiment, these phenomena are even more aggravated.

В структуре заболеваний эндокринной системы одно из главных мест занимает патология щитовидной железы (ЩЖ), рост которой за последние годы приобрел расширенную географическую распространенность. Сложившуюся ситуацию невозможно объяснить только повышением интереса к изучению заболеваний ЩЖ, а также совершенствованием методов их диагностики. Щитовидная железа ДЛЯ нормальной жизнедеятельности организма. чрезвычайно чувствительной к воздействию факторов природно-социалной среды, она служит одним из центральных звеньев в гормональной регуляции адаптивных процессов у человека. Заболевания щитовидной железы занимают важное место среди эндокринной патологии. Они сопровождаются нарушением выработки тироидных гормонов с развитием синдрома гипотиреоза или тиреотоксикоза. Щитовидная железа играет ключевую роль в обеспечении морфологических, метаболических изменений в органах и тканях, необходимых формирования эндокринного, иммунологического, энергетического ДЛЯ гомеостаза организма. Тироидная дисфункция сопровождает напряженное течение адаптации и сопутствует развитию патологии многих органов и систем организма.

Цель исследования

выявление структурных изменений щитовидной железы у крысят в постнатальном онтогенезе.

Материал и методы исследования

Воспроизведена экспериментальная модель гипотиреоза по общеизвестной методике. Крысам после рождения давали мерказолил в дозе 0,5 мг на 100 г массы тела в течение 30 суток, далее в течение 90 суток давали поддерживающую дозу мерказолила из расчета 0,25 мг на 100 мг. Для гистологического исследования брали щитовидную железу, фиксировали их в 10%-ном нейтральном формалине в течение 10 суток, после чего промывали в проточной воде, проводили через спирты возрастающей крепости, заливали в парафин и готовили среды толщиной 5-6 микрон. Полученные срезы окрашивали гематоксилином и эозином.

Hosted Online from Warsaw, Poland on October 10th, 2022.

www.conferencepublication.com

В результате исследований установлено, что паренхима щитовидной железы лабораторной крысы, представлена тиреоцитами кубической формы, которые формируют стенку для каждого фолликула. Ядра тироидного эпителия округлой формы и расположены в центре клеток. Щитовидная железа после рождения окружена тонкой соединительнотканной капсулой и состоит из одной дольки. Паренхима щитовидной железы состоит из сформированных фолликулов различных размеров. В щитовидной железе преобладают мелкие фолликулы, средние и крупные встречаются редко. По периферии железы фолликулы крупные. При микроскопическом исследовании щитовидной железы у интактной отмечалось типичное фолликулярное группы строение, соединительнотканные перегородки, отделяющие дольки друг от Фолликулы представлены округлой или слегка овальной формы с четкими контурами. Коллоид окрашен в бледно-розовый цвет. Клетки фолликулярного эпителия в основном кубической формы, ядра преимущественно расположены у базальной мембраны тиреоцитов. На гистологических срезах щитовидной железы экспериментальной группы животных, рожденных от матерей в состоянии наблюдается присущая недостаточности. гипотиреоза, картина, йодной Вследствие гипофункции развития щитовидной железы усиливается тиреотропная функция гипофиза, под влиянием избытка ТТГ тиреоциты приходят в состояние функциональной активности. Также отмечается наличие фолликулов с фестончатыми краями с высоким фолликулярным эпителием и незначительным количеством коллоида. Средняя высота тироцита увеличилась на 48 %, площадь тироцита увеличилась в 4,6 раза, при этом средний диаметр фолликула уменьшился на 26 %, площадь коллоида – на 24 % по сравнению с показателями интактной группы. Установлено увеличение числа митозов в ядрах тироцитов. Митозы в основном происходят в клетках экстрафолликулярных островков, которые, как известно, служат резервом для роста тироидной ткани. Митотический индекс увеличился в 4,8 раза по сравнению с интактной группой, что свидетельствует об усиленной пролиферации тироцитов. Так, суммарный объем фолликулярного эпителия возрос за счет экстрафолликулярных тироидных клеток. Также следует отметить, что активация функции железы сопровождалась интенсивностью кровоснабжения. Расширенные капилляры плотно окружают фолликулы, при этом перифолликулярная гиперемия выражена настолько, что у базальной мембраны отмечается картина непрерывной сосудистой кровеносной сети. Новообразованные сосуды претерпевают перестройку, «отпочковываясь» от стромальных артерий, увеличивая площадь контакта в системе тироцит-капилляр.

Hosted Online from Warsaw, Poland on October 10th, 2022.

www.conferencepublication.com

Такая картина на фоне йодного дефицита может быть предпосылкой узлообразования, что происходит при эндемическом зобе.

В результате исследований установлено, что в состояние гипотериоза у матерей, у потомства отмечали выраженные изменения не только зонального, но и клеточного состава тимуса во всех его структурно-функциональных зонах. В первые часы после рождения снижалась плотность клеточных элементов, особенно во внутреннем слое коркового вещества. Основной вклад в эти изменения вносило уменьшение численности лимфоидных клеток, и в первую очередь в коре снижалось количество зрелых лимфоцитов. Надо отметить, что при этом не снижалась интенсивность лимфоцитопоэтической функции тимуса, так как осталось количество бластов и митотически делящихся клеток в субкапсулярной зоне. Уменьшение численности клеток лимфоидного ряда можно объяснить угнетением пролиферативных процессов. В мозговом веществе обнаружено увеличение содержания средних лимфоцитов и уменьшение числа зрелых лимфоцитов, определялись тельца Гассаля, сформированные уплощенными эпителиальными клетками с гиалиновым содержимым.

Таким образом, анализ данных показывает, что у потомства рожденных от матерей в состоянии гипотиреоза наблюдается дисбаланс между процессами пролиферации и апоптоза в виде усиления апоптоза при подавлении пролиферации клеток органа.

ИСТОЧНИКИ И ЛИТЕРАТУРА

- 1. Новицкая А. Б., Стронгин Л. Г., Некрасова Т. А. и др. Особенности перекисного окисления липидов и гемодинамики у больных с субклиническим гипотиреозом // Клиническая тиреоидология. 2004. Т. 2. С. 27 31.
- 2.Стадник Н.А., Боташева В.С. Морфология щитовидной железы при экспериментальном тиреотоксикозе // Кубанский научный медицинский вестник. 2014. № 3 C.102-108
- 3.Фадеев В. В., Мельниченко Г. А. Гипотиреоз. Руководство для врачей. М., 2004. 288 с. 4. Подзалков А. В., Фадеев В. В. Гипотиреоз, субклинический гипотиреоз, высоконормальный уровень ТТГ // Клин. тиреоидол. 2009. Т. 5, № 2. С. 4 15.