Hosted From Ipoh, Malaysia May 2nd 2022

АУТРИГЕРЫ ВЫСОТНЫХ ЗДАНИЙ

Хакимжонов Сайотжон

Магистр Ташкентского архитектурно-строительного института

Жасур Дилмуродович

старший преподаватель Эргашев,

Абидов Абдулазиз Абдумаруфович

старший преподаватель

Hakimjonov Sayotjon

Master of Tashkent Architectural and Construction Institute

Jasur Dilmurodovich

senior teacher Ergashev,

Abidov Abdulaziz Abdumarufovich

senior teacher

Аннотация: В статье рассматриваются проблемы применения конструктивных систем с аутригерами для высотных зданий. Проведен анализ различных конструкций, уточнены особенности их работы, определены преимущества и недостатки, области их применения.

Ключевые слова: высотное здание, конструктивная система, аутригер, небоскреб, колонна, ядро жесткости, прочность, надежность, горизонтальная нагрузка, аэродинамика.

Высотное строительство и особенно строительство уникальных зданий высотой более 100 м и небоскребов получает все большую

привлекательность в России и во всем мире. На фоне урбанизации городов, развитие мегаполисов невозможно при бесконечном увеличении их площади [1].

Сегодня большие города стремятся ввысь, поднимаясь по вертикальной координате. Высотные уникальные здания являются символами успеха, лидерства и экономической мощи. Крупнейшие компании считают, что иметь представительство в самом высоком здании мира — признак высокой конкурентоспособности, хорошая реклама, символ престижа, имиджа и успеха.

Высотные здания имеют свои особенности и значительно отличаются от обычных.

К характерным особенностям высотных зданий относятся: - превышение горизонтальных нагрузок (ветровых) над вертикальными; - высокая вертикальная нагрузка на конструкции, основание и фундамент;

- повышенное воздействие на безопасность от различных факторов, таких как вибрации, пожары, сейсмические нагрузки, локальные разрушения, аварии,
- сложность обеспечения совместной работы несущих конструкций здания, а также неравномерное нагружение стен, колонн, и других несущих элементов.

Humanity and Science Congress

Hosted From Ipoh, Malaysia May 2nd 2022

https://conferencepublication.com

При проектировании и строительстве высотных зданий необходимо обеспечить их сопротивление боковым нагрузкам, возникающим от ветра или сейсмических воздействий. Поэтому на практике часто используется различные системы для сопротивления сдвигу. С увеличением высоты здания, растут и требования к большей жесткости конструкции. Для таких случаев разработаны различные системы, включающие стволы жесткости и аутригеры различных вариантов [2].

Построенные в России и зарубежном высотные уникальные здания дают множество примеров схем снижения боковых сдвигов. Существуют многочисленные системы высотных зданий, которые хорошо сопротивляются горизонтальной нагрузке.

В этих системах особое место занимают аутригеры – распорки, связывающие ядро с внешними колоннами. Аутригеры действуют как демпферы, уменьшая горизонтальные колебания. Аутригер обычно состоит из опоясывающей фермы, которая располагается по наружным колоннам, а также вертикальных связей, соединяющих центральное ядро с фермой [3,4]. В различных конструкциях могут быть двухэтажные аутригеры, а также аутригеры, в которых нет опоясывающих ферм или исключены вертикальные связи. Конструкция аутригеров в каждом высотном здании уникальна и может быть разной в пределах одного объекта [5, 6].

Система аутригеров служит для уменьшения опрокидывающего момента в ядре, которое иначе работало бы как чистая консоль, и для передачи уменьшенного момента колоннам вне ядра, вызывая в них напряжения растяжения — сжатия, что дает возможность увеличить плечо момента между ядром и этими колоннами.

Применение аутригерных систем имеет ряд преимуществ:

- системы аутригера могут быть сформированы в любой комбинации стали, бетона или композитных материалов;
- основные опрокидывающие моменты и связанные с ними
- возникающие деформации могут быть уменьшены действующими обратными моментами, приложенными к ядру на каждом перекрестке аутригера. Этот момент создается парой сил во внешних колоннах, с которыми аутригер соединяется. Это может потенциально увеличить
- эффективность структурной системы;
- аутригеры дают значительное сокращение и, возможно, полное снятие перемещений и напряжений по колоннам и системам фундаментов;
- наружный шаг колонн не вызывает структурные изменения и может легко совмещаться с эстетическими и функциональными требованиями;
- внешнее обрамление может состоять из простых балок и колонн, без использования твёрдых связей, типа структуры, что приводит к повышению экономических показателей;
- для прямоугольных зданий с вытянутыми фасадами аутригеры могут затронуть средние колонны при действии ветровых нагрузок в более критическом направлении. В одиночных ядрах и трубчатых системах, эти колонны несут значительные нагрузки от собственного веса или не работают в полной мере. В некоторых случаях системы аутригера могут эффективно включить силы тяжести почти каждой колонны в боковую систему сопротивления нагрузкам, приведя к значительным сокращения затрат [7].

Humanity and Science Congress

Hosted From Ipoh, Malaysia May 2nd 2022

https://conferencepublication.com

Наиболее существенным недостатком использования систем аутригеров является их потенциальное влияние на свободное пространство.

Это препятствие может быть минимизировано или, в некоторых случаях, устранено применением различных комбинаций [8]:

- устройство аутригеров на технических или промежуточных уровнях;
- расположение аутригеров в естественных наклонных линиях строительного профиля;
- включение многоуровневых диагональных аутригеров, для минимизации воздействия в каком-то одном уровне;
- наклон и смещение аутригеров, в соответствии с функциональной планировкой расположения помещений;

Еще одним потенциальным недостатком является влияние, которое может оказать установка на процесс монтажа. Объединение аутригера на промежуточных или верхних уровнях, если не подойти к этому должным образом, может оказать негативное влияние на процесс монтажа, поэтому в проектной документации предоставляют четкие и краткие рекомендации по монтажу.

Система аутригеров может привести к необходимости в следующих решениях:

- применение дорогих и трудоемких узлов и опорных соединений;
- -значительное увеличение размеров основания исключительно для сопротивления опрокидывающим силам;
- применение отнимающих много времени и дорогостоящий розеток- гнезд для соединения элементов системы.

Аутригеры в зависимости от способа соединения наружных колонн и ядра жесткости можно разделить на 2 вида: опорные и «условные».

В опорных вариантах аутригерных систем балки или фермы на прямую соединены с колоннами и ядром. В этом случае колонны располагаются по контуру здания.

В «условных-виртуальных» видах аутригеров передача изгибающих моментов от ядра к подвеске происходит без прямого соединения ядра с бондажными ленточными поясами. Главное в решение такого типа заключается в использовании перекрытий, которые обладают высокой

жесткостью в горизонтальной плоскости.

Ленточные бондажные пояса, связанные между периметральными колоннами здания, практически применяются трех видов: ферменные, сплошные и рамные. Исследования различных авторов показывают, что наиболее оптимальными являются ферменные пояса [9].

Ленточные фермы как боковые опоры аутригеров, дают возможность исключить ряд проблем при проектировании высотных зданий по сравнению с обычными аутригерными системами:

- отсутствие стержней-связки между ядром и внешними колоннами здания (от ядра жесткости к ленточным поясам);
- система ядро + железобетонные перекрытия + ферменный пояс надежно обеспечивают боковую жесткость высотного здания;

Humanity and Science Congress

Hosted From Ipoh, Malaysia May 2nd 2022

https://conferencepublication.com

- не только выносные опорные колонны, а все контурные колонны сопротивляются опрокидывающим моментам;
- опрокидывающие моменты от горизонтальных нагрузок уменьшаются от действия обратных моментов, приложенных к ядру от аутригерных связей.

Устройство аутригеров снижает зависимость высотного здания от ядра жесткости и дает возможность увеличить пространство от ядра к наружным колоннам. Это дает разнообразие функционального его применения.

Использование ядер жесткости в сочетании с аутригерными системами позволяет повысить жесткость высотного здания, уменьшить толщину его ядра, а также площади армирования [10].

Литература

- 1. Евтушенко А.И., Олейникова Е.В., Агеева В.А. и др. Развитие высотного строительства в Ростове-на-Дону // Инженерный вестник Дона, 2017, № 4.
- 2. URL: ivdon.ru/ru/magazine/archive/n4y2017/4404.
- 3. Алмазов В.О., Плотников А.И., Расторгуев В.С. Проблемы сопротивления зданий прогрессирующему разрушению // Вестник МГСУ. 2011. №2-1. С. 16- 20.
- 4. Choi H. S., Ho G., Joseph L. Outrigger Design for High-Rise Buildings. UK: Routledge, 2017. pp. 8-10.
- 5. Bungale S. Taranath. Structural Analysis and Design of Tall Buildings: Steel and Composite Construction. Florida (USA): CRC Press, 2016. pp. 44-48.
- 6. Shumeyko V.I. The support systems of unique high-rise buildings // MATEC International science conference "Smart city". St. Petersburg: EDP Sciences, 2017. 106 p.
- 7. Шумейко В.И., Кудинов, О.А. Об особенностях проектирования уникальных, большепролетных и высотных зданий и сооружений // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/magazine/archive/n4y2013/2164.
- 8. Karamysheva A.A., Shumeyko V.I. Rational constructional and planning concepts of high-rise buildings' stabilization // Engineering studies. Volume 9, №3, 2017. pp. 696-702.
- 9. Травуш В.И., Конин Д.В. Работа высотных зданий с применением этажей жесткости (аутригеров) // Вестник ТГАСУ. 2009. №2. С. 77-91.
- 10. Чернуха Н.А., Горелик П.И., Лепешкина Д.О. Оптимальное положение и конструкция аутригерных систем в высотных зданиях // Строительство уникальных зданий и сооружений. 2015. №9 (36). С. 18-32.
- 11. Fu F. Design and Analysis of Tall and Complex Structures. United Kingdom: Butterworth-Heinemann, 2018. pp. 81-90.