
4th International Multidisciplinary Scientific Conference on
Ingenious Global Thoughts

Hosted from Boston, USA
https://conferencepublication.com June 30th 2021

33

ALGORITHM FOR SOFTWARE DEVELOPMENT

Isoqova Adiba,

Termez State University,

Student of the Faculty of Information Technology.

E-mail: isabida010120@mail.ru

Today I would like to tell you about some code development algorithm, be it software or

a game. I do not claim to be innovative, revolutionary, or any other privilege of this development

method. I believe that any approach has a right to life.

Recently, I began to notice a certain algorithm that I use when writing code. I confess - I

have not read about this anywhere, although, even if it did slip, I do not remember it. Therefore,

if I violated someone's rights, I apologize.

On reflection, I came to the conclusion that this is a great method to minimize bugs even

before writing the entire program.

The algorithm itself

1. Initially, the program is designed in the head or on paper; we develop the architecture

of the application.

2. Next, from all the future code, we select the core of the program, from which we will

build on in the future, break it down into small subtasks and get down to work. After completing

the subtask, you can rest and / or optimize your code.

3. After writing the kernel, go for a walk or do something unrelated to what you were just

doing.

4. After rest, we look through the architecture for optimization. If you don't like

something, change it. If nothing new comes to your mind, it does not matter, perhaps you

initially thought of a good application architecture.

5. Start developing new functionality by breaking it down into smaller pieces. After

completing the small part, you can rest and / or optimize the code.

6. After writing new functionality, go, take a walk or do something unrelated to what you

were just doing.

7. After resting, take another look at the architecture of the application, and change it if

necessary. After - optimize the code.

8. Repeat from 5 to 7 points when adding each new functionality before writing the

program.

Let's go through the points

You can read about the development of application architecture on the Internet, but the

main concept, in my opinion, is the development of basic classes, groups of classes and their

interaction with each other.

By the core of the program, I mean the main functionality of the application, for example:

in the game - the engine for positioning objects in the game world, in the drawing program - the

simple functionality of the canvas and brush, in the program for creating and editing text - the

component that formats and displays text, etc.

mailto:isabida010120@mail.ru

4th International Multidisciplinary Scientific Conference on
Ingenious Global Thoughts

Hosted from Boston, USA
https://conferencepublication.com June 30th 2021

34

Breaks between small and large tasks are essential. First, so that the code you write can

be digested in your head. Secondly, in order for you to rest, because, as you know, the best rest is

to change one activity to another. Thirdly, to warm up the body.

Better to optimize with less code and more often than everything and very rarely. This

approach is good for its simplicity and ease of optimization. Optimization means everything that

is included in code optimization, for example, refactoring, performance optimization.

Optimizing code after a rest, rather than before it, has the advantage of being fresh.

Conclusion

The uniqueness of this method, I believe, is in breaking down the programming into

small tasks, looking at the architecture of the program from the outside, optimizing the code and

saving, every time, after completing one assigned task. Plus, with this approach, the application

is operational at almost any point in time. And if you did not survive, and your lights were turned

off, the loss will not be big, it will even benefit you, because you can rethink the previously

written code and optimize it again.

Perhaps the only drawback of this approach is the coding time. But it also pays off due to

fewer bugs during further development.

For beginners, I would not recommend optimizing the code so often, so as not to lose

interest in basic development. But people with healthy perfectionism will especially love this

method! The main thing is not to overdo it and not make optimization a goal.

